不銹鋼管軋制過程中,受制于特殊的環形斷面形狀,使得軋制的工藝、設備具有特殊性和復雜性。同時在成型過程中存在擠壓、扭轉、拉伸等多種形變方式,因此實現變形溫度與變形量匹配的控制靈活性非常小。在此條件的制約下,軋制成型的控制思想往往也只能是在高溫環境變形抗力較小的條件下盡快完成熱變形過程。顯然,這種“無奈之舉”與控制軋制的通過對加熱溫度、軋制溫度、變形制度等工藝參數的匹配控制,進而基于“低溫軋制”實現對奧氏體及相變產物組織狀態的調控機制相違背,最終在改善性能方面無能為力。因此,在不實際改變高溫熱軋成型條件的背景下,如何實現奧氏體的調控進而為后續相變提供理想奧氏體狀態成為不銹(xiu)鋼管組織進一步細化的突破口。
通(tong)過對(dui)(dui)第(di)二相(xiang)(xiang)(xiang)(xiang)粒子(zi)的(de)(de)(de)(de)適當控(kong)(kong)制(zhi),可在實(shi)現(xian)(xian)釘扎奧(ao)氏(shi)(shi)體(ti)(ti)晶(jing)界的(de)(de)(de)(de)同(tong)時利用(yong)第(di)二相(xiang)(xiang)(xiang)(xiang)誘導晶(jing)內(nei)鐵(tie)(tie)素(su)(su)體(ti)(ti)形(xing)(xing)核(he)機制(zhi),獲得(de)一(yi)定(ding)程度細化(hua)(hua)的(de)(de)(de)(de)奧(ao)氏(shi)(shi)體(ti)(ti)并為后續(xu)相(xiang)(xiang)(xiang)(xiang)變(bian)(bian)(bian)(bian)提(ti)(ti)供(gong)豐富的(de)(de)(de)(de)相(xiang)(xiang)(xiang)(xiang)變(bian)(bian)(bian)(bian)形(xing)(xing)核(he)點。該(gai)組(zu)織(zhi)(zhi)調(diao)控(kong)(kong)思想目(mu)前廣泛應(ying)用(yong)于大線(xian)能(neng)量焊接用(yong)鋼材的(de)(de)(de)(de)開發中,其核(he)心機理是通(tong)過引(yin)入適當氧化(hua)(hua)物和析出(chu)相(xiang)(xiang)(xiang)(xiang)實(shi)現(xian)(xian)釘扎熱(re)影響(xiang)區(qu)奧(ao)氏(shi)(shi)體(ti)(ti)晶(jing)界并促進(jin)晶(jing)內(nei)鐵(tie)(tie)素(su)(su)體(ti)(ti)形(xing)(xing)成,進(jin)而(er)細化(hua)(hua)相(xiang)(xiang)(xiang)(xiang)變(bian)(bian)(bian)(bian)組(zu)織(zhi)(zhi),改善熱(re)影響(xiang)區(qu)組(zu)織(zhi)(zhi)性(xing)能(neng)。顯(xian)然,這種(zhong)熱(re)影響(xiang)區(qu)內(nei)的(de)(de)(de)(de)奧(ao)氏(shi)(shi)體(ti)(ti)狀(zhuang)態與不(bu)銹鋼管(guan)高溫(wen)(wen)(wen)(wen)形(xing)(xing)變(bian)(bian)(bian)(bian)下(xia)的(de)(de)(de)(de)粗大奧(ao)氏(shi)(shi)體(ti)(ti)組(zu)織(zhi)(zhi)十(shi)分吻合(he)。因此(ci),第(di)二相(xiang)(xiang)(xiang)(xiang)誘導相(xiang)(xiang)(xiang)(xiang)變(bian)(bian)(bian)(bian)形(xing)(xing)核(he)成為熱(re)軋(ya)無縫(feng)鋼管(guan)在線(xian)組(zu)織(zhi)(zhi)性(xing)能(neng)調(diao)控(kong)(kong),特(te)別是組(zu)織(zhi)(zhi)細化(hua)(hua)和提(ti)(ti)高強韌(ren)性(xing)能(neng)的(de)(de)(de)(de)一(yi)種(zhong)有(you)效途徑,即可在熱(re)軋(ya)不(bu)銹鋼管(guan)高溫(wen)(wen)(wen)(wen)變(bian)(bian)(bian)(bian)形(xing)(xing)的(de)(de)(de)(de)條件(jian)下(xia),實(shi)現(xian)(xian)板材領(ling)域低溫(wen)(wen)(wen)(wen)軋(ya)制(zhi)具備的(de)(de)(de)(de)“控(kong)(kong)制(zhi)軋(ya)制(zhi)”組(zu)織(zhi)(zhi)細化(hua)(hua)效果。基于這一(yi)思路以(yi)及對(dui)(dui)鋼中第(di)二相(xiang)(xiang)(xiang)(xiang)粒子(zi)析出(chu)行為的(de)(de)(de)(de)研究(jiu),東北大學研究(jiu)團隊(dui)進(jin)一(yi)步提(ti)(ti)出(chu)了“第(di)二相(xiang)(xiang)(xiang)(xiang)控(kong)(kong)制(zhi)+高溫(wen)(wen)(wen)(wen)熱(re)軋(ya)+控(kong)(kong)制(zhi)冷(leng)卻”的(de)(de)(de)(de)在線(xian)形(xing)(xing)變(bian)(bian)(bian)(bian)/相(xiang)(xiang)(xiang)(xiang)變(bian)(bian)(bian)(bian)一(yi)體(ti)(ti)化(hua)(hua)組(zu)織(zhi)(zhi)調(diao)控(kong)(kong)路線(xian)。針對(dui)(dui)典型碳(tan)錳鋼,通(tong)過復(fu)合(he)脫氧工藝控(kong)(kong)制(zhi),在鋼中引(yin)入具有(you)高熱(re)穩定(ding)性(xing)的(de)(de)(de)(de)氧化(hua)(hua)物后,充分發揮(hui)第(di)二相(xiang)(xiang)(xiang)(xiang)粒子(zi)的(de)(de)(de)(de)誘導晶(jing)內(nei)形(xing)(xing)核(he)作用(yong),在1100℃高溫(wen)(wen)(wen)(wen)軋(ya)制(zhi)和控(kong)(kong)制(zhi)冷(leng)卻條件(jian)下(xia)獲得(de)了微(wei)細的(de)(de)(de)(de)晶(jing)內(nei)鐵(tie)(tie)素(su)(su)體(ti)(ti)組(zu)織(zhi)(zhi),實(shi)驗鋼的(de)(de)(de)(de)強、韌(ren)性(xing)能(neng)均顯(xian)著提(ti)(ti)高(如圖6-68所示),在不(bu)實(shi)施(shi)低溫(wen)(wen)(wen)(wen)軋(ya)制(zhi)的(de)(de)(de)(de)控(kong)(kong)制(zhi)軋(ya)制(zhi)前提(ti)(ti)下(xia),實(shi)現(xian)(xian)了類同(tong)于“控(kong)(kong)軋(ya)控(kong)(kong)冷(leng)”的(de)(de)(de)(de)良好組(zu)織(zhi)(zhi)細化(hua)(hua)效果。
針對(dui)“第(di)二相控(kong)制+高溫熱軋+控(kong)制冷(leng)(leng)(leng)(leng)卻”工藝下(xia)的(de)(de)(de)低碳鋼(gang)組織演變(bian)(bian)行為(wei)進(jin)行了系(xi)統研究。采用質量分(fen)數為(wei)0.07C-0.06Si-1.5Mn-0.01P-0.006S成分(fen)的(de)(de)(de)實驗鋼(gang),進(jin)行鈦脫氧處理(li),引入(ru)氧化鈦型(xing)第(di)二相粒(li)子,考察了不同(tong)變(bian)(bian)形和冷(leng)(leng)(leng)(leng)速(su)(su)條件下(xia)的(de)(de)(de)連續冷(leng)(leng)(leng)(leng)卻轉變(bian)(bian)行為(wei),如圖6-69和圖6-70所(suo)示。結(jie)(jie)果表明,含氧化鈦實驗鋼(gang)在1.5~15℃/s冷(leng)(leng)(leng)(leng)速(su)(su)范(fan)圍內可獲得明顯(xian)的(de)(de)(de)針狀鐵素體組織,并(bing)且在1050℃以上高的(de)(de)(de)變(bian)(bian)形溫度下(xia)有利于組織的(de)(de)(de)細化。根據實驗結(jie)(jie)果,為(wei)了達到組織細化的(de)(de)(de)目的(de)(de)(de),在不銹鋼(gang)管(guan)高溫變(bian)(bian)形條件下(xia),需結(jie)(jie)合控(kong)制冷(leng)(leng)(leng)(leng)卻技術進(jin)行鋼(gang)管(guan)軋后冷(leng)(leng)(leng)(leng)卻路徑的(de)(de)(de)控(kong)制,從而發揮細晶組織對(dui)強(qiang)度和韌性同(tong)時改(gai)善的(de)(de)(de)作(zuo)用。
目前,控制冷卻技術在熱軋不銹鋼管中的工業應用研究尚處于起步階段,特別是結合管材成分特點的組織性能在線調控機理機制研究還落后于板帶材等領域。熱軋鋼管形變/相變在線組織一體化調控技術研究取得一定進展,后續依據“第二相控制+高溫熱軋+控制冷卻”的組織調控思路,深入研究變形一冷卻一相變的協同控制機制,實現鋼管領域產品的“控軋控冷”組織調控工藝效果,構建基于在線控制冷卻工藝的全新熱軋不銹鋼管組織性能調控平臺。基于形變/相變在線組織調控技術,進一步地通過成分設計一熱軋成型一控制冷卻一熱處理的全流程工藝一體化控制,實現細晶強化、相變強化及析出強化的綜合強韌化,開發出高品質、低成本的熱軋不(bu)銹(xiu)鋼管產品是進一步研發的重點。這對促進我國鋼鐵行業以“資源節約型、節能減排型”等綠色制造為特征的熱軋不(bu)銹鋼管產品的開發與生產,具有重要意義。